THE ORIGIN OF NUMERALS
The graphical origin of the Roman numbers ©1992-2011, Sarcone & Waeber | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Other original systems of numeration | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Chinese and Japanese contributions | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Monday, 25 February 2013
Origin Of Numerals
Sunday, 24 February 2013
Gaussian Integers
GAUSSIAN INTEGERS
Gaussian integers can be visualized in the complex plane, with their real components on the horizontal axis, and their imaginary components orthogonal along the vertical axis.
[This post is targeted at a level 3 student who has some familiarity with complex numbers.]
Gaussian integers are complex numbers of the form
where
and
are integers. For example,
are all Gaussian integers, while
,
, and
are not. One can add, subtract and multiply Gaussian integers just like all other complex numbers. For example:
Addition:
,
Subtraction:
,
Multiplication:
.
Addition:
Subtraction:
Multiplication:
As you can see, the result will again be a Gaussian integer. However, if you try to divide two Gaussian integers, the result will not always be a Gaussian integer:
Division:
.
Division:
Like all complex numbers, Gaussian integers have the following properties:
1. The conjugate of
is
, which is again a Gaussian integer.
2. The norm of
is
, which is a non-negative integer.
3. The absolute value of a Gaussian integer is the (positive) square root of its norm:
.
4. There are no positive or negative Gaussian integers, and one cannot say that one is less than another. One can, however, compare their norms.
2. The norm of
3. The absolute value of a Gaussian integer is the (positive) square root of its norm:
4. There are no positive or negative Gaussian integers, and one cannot say that one is less than another. One can, however, compare their norms.
We say that a Gaussian integer
is a unit, if
is also a Gaussian integer. The only units are
.
A Gaussian integer
is a multiple of a Gaussian integer
if
for some Gaussian integer
. In this case we say that
divides
, and use the notation
.
A Gaussian integer is called prime, if it is not equal to a product of two non-unit Gaussian integers. It is called composite otherwise. Clearly, multiplying by a unit does not change the primality. Note that the same definition for the usual integers implies that
is a prime integer. This may seem a bit strange, but no other definition makes sense for the Gaussian integers. (Keep in mind that there is no such thing as a positive Gaussian integer!) Note that a number may be prime as a usual integer, but composite as a Gaussian integer, for example
.
There are three kinds of Gaussian primes:
1)
. They are all the same up to multiplication by a unit, so we can say
where
is a unit.
2)
, where
is a usual prime (
), and
.
3)
or
, where
and
are natural numbers such that
for a prime
,
. Such
and
exist, and are unique, up to switching
and
, for every prime
. This classical result is called the Fermat Two Squares Theorem. It was noticed and announced by Pierre Fermat in 1640 and first proven by Leonhard Euler in 1747.
1)
2)
3)
For those who had learned some abstract algebra, the algebraic properties of Gaussian integers (usually denoted by
) make it a commutative ring, moreover, a domain. Furthermore, just like the usual integers, all Gaussian integers can be decomposed into a product of Gaussian primes, uniquely up to units. The formal way of saying this is that
is a unique factorization domain (UFD for brevity).
The classification of Gaussian primes is far from obvious, and so is the unique factorization property. (Speaking of which, do you know how to prove it for the usual integers? You know it to be true from experience, but it is actually not easy to prove!) These theorems will be proven in the upcoming post.
Worked Examples
1. Suppose
is a usual integer. Show that a Gaussian integer
is a multiple of
if and only if both
and
are multiples of
.
Solution: By definition, one Gaussian integer is a multiple of the other if and only if their ratio is also a Gaussian integer. Observe that
, so
and
are integers, which means that both
and
are multiples of
.
2. Suppose
is a multiple of
. Show that
is a multiple of
.
Solution: If
, then
. Therefore,


Because
and
are integers,
is an integer.
Because
This is the multiplicative property of the norm, which was mentioned in Complex Numbers Test Yourself 2.
3. Decompose
into a product of primes.
Solution: Because
the norm of any prime that divides
must divide
. Looking at the classification of primes, because
is
modulo
and
, there are two such primes, up to units:
and
. Dividing
by
, we get
which is not a Gaussian integer. Dividing
by
, we get
. So 
4. Suppose a Gaussian integer
divides a Gaussian integer
. Show that
divides 
Solution: From Complex Numbers – Worked Example 3, we know that conjugate distributes across multiplication, hence if
, then
.
Give a Try & Test Yourself
1. Show that
and
are Gaussian units and there are no other Gaussian units.
2. Find two Gaussian integers that have the same norm and are NOT multiplies of each other, hence the converse of the Example 2 is not true.
3. Show that
is a prime. Hint: Norm.
4. Show that every prime integer of the form
is also a Gaussian prime.
Subscribe to:
Posts (Atom)